package coq-mathcomp-odd-order
- Overview
- No Docs
You can search for identifiers within the package.
in-package search v0.2.0
The formal proof of the Feit-Thompson theorem
Install
Dune Dependency
Authors
Maintainers
Sources
mathcomp-odd-order.1.13.0.tar.gz
sha512=4caebcbce72976fc771a8507de4e3ed4614ae0f2f04dec3e50088b16cdafa8e29a213c8b1054c1e68765c135d4a39c0eebafd750a1c092060fc868180e129a9b
Description
The formal proof of the Feit-Thompson theorem.
From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14.
Check Feit_Thompson. : forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G
From mathcomp Require Import all_ssreflect all_fingroup all_solvable stripped_odd_order_theorem.
Check stripped_Odd_Order. : forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T) (G : T -> Type) (n : natural), group_axioms T mul one inv -> group T mul one inv G -> finite_of_order T G n -> odd n -> solvable_group T mul one inv G
Tags
keyword:finite groups keyword:Feit Thompson theorem keyword:small scale reflection keyword:mathematical components keyword:odd order theoremPublished: 01 Feb 2022
Dependencies (5)
- coq-mathcomp-solvable
- coq-mathcomp-fingroup
- coq-mathcomp-field
- coq-mathcomp-character
-
coq-mathcomp-ssreflect
>= "1.12.0" & < "1.15"
Dev Dependencies
None
Used by
None
Conflicts
None
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page