Library Stdlib.PArith.BinPosDef
Binary positive numbers, operations
Require Export BinNums BinNums.PosDef.
Local Open Scope positive_scope.
Module Pos.
Include BinNums.PosDef.Pos.
Definition t := positive.
Definition pred_mask (p : mask) : mask :=
match p with
| IsPos 1 => IsNul
| IsPos q => IsPos (pred q)
| IsNul => IsNeg
| IsNeg => IsNeg
end.
Infix "-" := sub : positive_scope.
Infix "*" := mul : positive_scope.
Fixpoint size_nat p : nat :=
match p with
| 1 => S O
| p~1 => S (size_nat p)
| p~0 => S (size_nat p)
end.
Same, with positive output
Fixpoint size p :=
match p with
| 1 => 1
| p~1 => succ (size p)
| p~0 => succ (size p)
end.
Infix "?=" := compare (at level 70, no associativity) : positive_scope.
Definition min p p' :=
match p ?= p' with
| Lt | Eq => p
| Gt => p'
end.
Definition max p p' :=
match p ?= p' with
| Lt | Eq => p'
| Gt => p
end.
Definition ltb x y :=
match x ?= y with Lt => true | _ => false end.
Infix "=?" := eqb (at level 70, no associativity) : positive_scope.
Infix "<=?" := leb (at level 70, no associativity) : positive_scope.
Infix "<?" := ltb (at level 70, no associativity) : positive_scope.
Definition divide p q := exists r, q = r*p.
Notation "( p | q )" := (divide p q) (at level 0) : positive_scope.
Instead of the Euclid algorithm, we use here the Stein binary
algorithm, which is faster for this representation. This algorithm
is almost structural, but in the last cases we do some recursive
calls on subtraction, hence the need for a counter.
Fixpoint gcdn (n : nat) (a b : positive) : positive :=
match n with
| O => 1
| S n =>
match a,b with
| 1, _ => 1
| _, 1 => 1
| a~0, b~0 => (gcdn n a b)~0
| _ , b~0 => gcdn n a b
| a~0, _ => gcdn n a b
| a'~1, b'~1 =>
match a' ?= b' with
| Eq => a
| Lt => gcdn n (b'-a') a
| Gt => gcdn n (a'-b') b
end
end
end.
We'll show later that we need at most (log2(a.b)) loops
Generalized Gcd, also computing the division of a and b by the gcd
Set Printing Universes.
Fixpoint ggcdn (n : nat) (a b : positive) : (positive*(positive*positive)) :=
match n with
| O => (1,(a,b))
| S n =>
match a,b with
| 1, _ => (1,(1,b))
| _, 1 => (1,(a,1))
| a~0, b~0 =>
let (g,p) := ggcdn n a b in
(g~0,p)
| _, b~0 =>
let '(g,(aa,bb)) := ggcdn n a b in
(g,(aa, bb~0))
| a~0, _ =>
let '(g,(aa,bb)) := ggcdn n a b in
(g,(aa~0, bb))
| a'~1, b'~1 =>
match a' ?= b' with
| Eq => (a,(1,1))
| Lt =>
let '(g,(ba,aa)) := ggcdn n (b'-a') a in
(g,(aa, aa + ba~0))
| Gt =>
let '(g,(ab,bb)) := ggcdn n (a'-b') b in
(g,(bb + ab~0, bb))
end
end
end.
Definition ggcd (a b: positive) := ggcdn (size_nat a + size_nat b)%nat a b.
Fixpoint ggcdn (n : nat) (a b : positive) : (positive*(positive*positive)) :=
match n with
| O => (1,(a,b))
| S n =>
match a,b with
| 1, _ => (1,(1,b))
| _, 1 => (1,(a,1))
| a~0, b~0 =>
let (g,p) := ggcdn n a b in
(g~0,p)
| _, b~0 =>
let '(g,(aa,bb)) := ggcdn n a b in
(g,(aa, bb~0))
| a~0, _ =>
let '(g,(aa,bb)) := ggcdn n a b in
(g,(aa~0, bb))
| a'~1, b'~1 =>
match a' ?= b' with
| Eq => (a,(1,1))
| Lt =>
let '(g,(ba,aa)) := ggcdn n (b'-a') a in
(g,(aa, aa + ba~0))
| Gt =>
let '(g,(ab,bb)) := ggcdn n (a'-b') b in
(g,(bb + ab~0, bb))
end
end
end.
Definition ggcd (a b: positive) := ggcdn (size_nat a + size_nat b)%nat a b.
Shifts. NB: right shift of 1 stays at 1.
Definition shiftl_nat (p:positive) := nat_rect _ p (fun _ => xO).
Definition shiftr_nat (p:positive) := nat_rect _ p (fun _ => div2).
Definition shiftl (p:positive)(n:N) :=
match n with
| N0 => p
| Npos n => iter xO p n
end.
Definition shiftr (p:positive)(n:N) :=
match n with
| N0 => p
| Npos n => iter div2 p n
end.
Checking whether a particular bit is set or not
Fixpoint testbit_nat (p:positive) : nat -> bool :=
match p with
| 1 => fun n => match n with
| O => true
| S _ => false
end
| p~0 => fun n => match n with
| O => false
| S n' => testbit_nat p n'
end
| p~1 => fun n => match n with
| O => true
| S n' => testbit_nat p n'
end
end.
Same, but with index in N
Fixpoint testbit (p:positive)(n:N) :=
match p, n with
| p~0, N0 => false
| _, N0 => true
| 1, _ => false
| p~0, Npos n => testbit p (pred_N n)
| p~1, Npos n => testbit p (pred_N n)
end.
From Peano natural numbers to binary positive numbers
Fixpoint of_nat (n:nat) : positive :=
match n with
| O => 1
| S O => 1
| S x => succ (of_nat x)
end.
Local Notation ten := 1~0~1~0.
Fixpoint of_uint_acc (d:Decimal.uint)(acc:positive) :=
match d with
| Decimal.Nil => acc
| Decimal.D0 l => of_uint_acc l (mul ten acc)
| Decimal.D1 l => of_uint_acc l (add 1 (mul ten acc))
| Decimal.D2 l => of_uint_acc l (add 1~0 (mul ten acc))
| Decimal.D3 l => of_uint_acc l (add 1~1 (mul ten acc))
| Decimal.D4 l => of_uint_acc l (add 1~0~0 (mul ten acc))
| Decimal.D5 l => of_uint_acc l (add 1~0~1 (mul ten acc))
| Decimal.D6 l => of_uint_acc l (add 1~1~0 (mul ten acc))
| Decimal.D7 l => of_uint_acc l (add 1~1~1 (mul ten acc))
| Decimal.D8 l => of_uint_acc l (add 1~0~0~0 (mul ten acc))
| Decimal.D9 l => of_uint_acc l (add 1~0~0~1 (mul ten acc))
end.
Fixpoint of_uint (d:Decimal.uint) : N :=
match d with
| Decimal.Nil => N0
| Decimal.D0 l => of_uint l
| Decimal.D1 l => Npos (of_uint_acc l 1)
| Decimal.D2 l => Npos (of_uint_acc l 1~0)
| Decimal.D3 l => Npos (of_uint_acc l 1~1)
| Decimal.D4 l => Npos (of_uint_acc l 1~0~0)
| Decimal.D5 l => Npos (of_uint_acc l 1~0~1)
| Decimal.D6 l => Npos (of_uint_acc l 1~1~0)
| Decimal.D7 l => Npos (of_uint_acc l 1~1~1)
| Decimal.D8 l => Npos (of_uint_acc l 1~0~0~0)
| Decimal.D9 l => Npos (of_uint_acc l 1~0~0~1)
end.
Local Notation sixteen := 1~0~0~0~0.
Fixpoint of_hex_uint_acc (d:Hexadecimal.uint)(acc:positive) :=
match d with
| Hexadecimal.Nil => acc
| Hexadecimal.D0 l => of_hex_uint_acc l (mul sixteen acc)
| Hexadecimal.D1 l => of_hex_uint_acc l (add 1 (mul sixteen acc))
| Hexadecimal.D2 l => of_hex_uint_acc l (add 1~0 (mul sixteen acc))
| Hexadecimal.D3 l => of_hex_uint_acc l (add 1~1 (mul sixteen acc))
| Hexadecimal.D4 l => of_hex_uint_acc l (add 1~0~0 (mul sixteen acc))
| Hexadecimal.D5 l => of_hex_uint_acc l (add 1~0~1 (mul sixteen acc))
| Hexadecimal.D6 l => of_hex_uint_acc l (add 1~1~0 (mul sixteen acc))
| Hexadecimal.D7 l => of_hex_uint_acc l (add 1~1~1 (mul sixteen acc))
| Hexadecimal.D8 l => of_hex_uint_acc l (add 1~0~0~0 (mul sixteen acc))
| Hexadecimal.D9 l => of_hex_uint_acc l (add 1~0~0~1 (mul sixteen acc))
| Hexadecimal.Da l => of_hex_uint_acc l (add 1~0~1~0 (mul sixteen acc))
| Hexadecimal.Db l => of_hex_uint_acc l (add 1~0~1~1 (mul sixteen acc))
| Hexadecimal.Dc l => of_hex_uint_acc l (add 1~1~0~0 (mul sixteen acc))
| Hexadecimal.Dd l => of_hex_uint_acc l (add 1~1~0~1 (mul sixteen acc))
| Hexadecimal.De l => of_hex_uint_acc l (add 1~1~1~0 (mul sixteen acc))
| Hexadecimal.Df l => of_hex_uint_acc l (add 1~1~1~1 (mul sixteen acc))
end.
Fixpoint of_hex_uint (d:Hexadecimal.uint) : N :=
match d with
| Hexadecimal.Nil => N0
| Hexadecimal.D0 l => of_hex_uint l
| Hexadecimal.D1 l => Npos (of_hex_uint_acc l 1)
| Hexadecimal.D2 l => Npos (of_hex_uint_acc l 1~0)
| Hexadecimal.D3 l => Npos (of_hex_uint_acc l 1~1)
| Hexadecimal.D4 l => Npos (of_hex_uint_acc l 1~0~0)
| Hexadecimal.D5 l => Npos (of_hex_uint_acc l 1~0~1)
| Hexadecimal.D6 l => Npos (of_hex_uint_acc l 1~1~0)
| Hexadecimal.D7 l => Npos (of_hex_uint_acc l 1~1~1)
| Hexadecimal.D8 l => Npos (of_hex_uint_acc l 1~0~0~0)
| Hexadecimal.D9 l => Npos (of_hex_uint_acc l 1~0~0~1)
| Hexadecimal.Da l => Npos (of_hex_uint_acc l 1~0~1~0)
| Hexadecimal.Db l => Npos (of_hex_uint_acc l 1~0~1~1)
| Hexadecimal.Dc l => Npos (of_hex_uint_acc l 1~1~0~0)
| Hexadecimal.Dd l => Npos (of_hex_uint_acc l 1~1~0~1)
| Hexadecimal.De l => Npos (of_hex_uint_acc l 1~1~1~0)
| Hexadecimal.Df l => Npos (of_hex_uint_acc l 1~1~1~1)
end.
Definition of_num_uint (d:Number.uint) : N :=
match d with
| Number.UIntDecimal d => of_uint d
| Number.UIntHexadecimal d => of_hex_uint d
end.
Definition of_int (d:Decimal.int) : option positive :=
match d with
| Decimal.Pos d =>
match of_uint d with
| N0 => None
| Npos p => Some p
end
| Decimal.Neg _ => None
end.
Definition of_hex_int (d:Hexadecimal.int) : option positive :=
match d with
| Hexadecimal.Pos d =>
match of_hex_uint d with
| N0 => None
| Npos p => Some p
end
| Hexadecimal.Neg _ => None
end.
Definition of_num_int (d:Number.int) : option positive :=
match d with
| Number.IntDecimal d => of_int d
| Number.IntHexadecimal d => of_hex_int d
end.
Fixpoint to_little_uint p :=
match p with
| 1 => Decimal.D1 Decimal.Nil
| p~1 => Decimal.Little.succ_double (to_little_uint p)
| p~0 => Decimal.Little.double (to_little_uint p)
end.
Definition to_uint p := Decimal.rev (to_little_uint p).
Fixpoint to_little_hex_uint p :=
match p with
| 1 => Hexadecimal.D1 Hexadecimal.Nil
| p~1 => Hexadecimal.Little.succ_double (to_little_hex_uint p)
| p~0 => Hexadecimal.Little.double (to_little_hex_uint p)
end.
Definition to_hex_uint p := Hexadecimal.rev (to_little_hex_uint p).
Definition to_num_uint p := Number.UIntDecimal (to_uint p).
Definition to_num_hex_uint n := Number.UIntHexadecimal (to_hex_uint n).
Definition to_int n := Decimal.Pos (to_uint n).
Definition to_hex_int p := Hexadecimal.Pos (to_hex_uint p).
Definition to_num_int n := Number.IntDecimal (to_int n).
Definition to_num_hex_int n := Number.IntHexadecimal (to_hex_int n).
Number Notation positive of_num_int to_num_hex_uint : hex_positive_scope.
Number Notation positive of_num_int to_num_uint : positive_scope.
End Pos.
Re-export the notation for those who just Import BinPosDef
Number Notation positive Pos.of_num_int Pos.to_num_hex_uint : hex_positive_scope.
Number Notation positive Pos.of_num_int Pos.to_num_uint : positive_scope.
Number Notation positive Pos.of_num_int Pos.to_num_uint : positive_scope.