Library Corelib.Floats.SpecFloat
Specification of floating-point arithmetic
Inductive specification of floating-point numbers
Variant spec_float :=
| S754_zero (s : bool)
| S754_infinity (s : bool)
| S754_nan
| S754_finite (s : bool) (m : positive) (e : Z).
| S754_zero (s : bool)
| S754_infinity (s : bool)
| S754_nan
| S754_finite (s : bool) (m : positive) (e : Z).
Parameterized definitions
Section FloatOps.
Variable prec emax : Z.
Definition emin := Z.sub (Z.sub (Zpos 3) emax) prec.
Definition fexp e := Z.max (Z.sub e prec) emin.
Section Zdigits2.
Fixpoint digits2_pos (n : positive) : positive :=
match n with
| xH => xH
| xO p => Pos.succ (digits2_pos p)
| xI p => Pos.succ (digits2_pos p)
end.
Definition Zdigits2 n :=
match n with
| Z0 => n
| Zpos p => Zpos (digits2_pos p)
| Zneg p => Zpos (digits2_pos p)
end.
End Zdigits2.
Section ValidBinary.
Definition canonical_mantissa m e :=
Z.eqb (fexp (Z.add (Zpos (digits2_pos m)) e)) e.
Definition bounded m e :=
andb (canonical_mantissa m e) (Z.leb e (Z.sub emax prec)).
Definition valid_binary x :=
match x with
| S754_finite _ m e => bounded m e
| _ => true
end.
End ValidBinary.
Section Iter.
Context {A : Type}.
Variable (f : A -> A).
Fixpoint iter_pos (n : positive) (x : A) {struct n} : A :=
match n with
| xI n' => iter_pos n' (iter_pos n' (f x))
| xO n' => iter_pos n' (iter_pos n' x)
| xH => f x
end.
End Iter.
Section Rounding.
Inductive location := loc_Exact | loc_Inexact : comparison -> location.
Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.
Definition shr_1 mrs :=
let '(Build_shr_record m r s) := mrs in
let s := orb r s in
match m with
| Z0 => Build_shr_record Z0 false s
| Zpos xH => Build_shr_record Z0 true s
| Zpos (xO p) => Build_shr_record (Zpos p) false s
| Zpos (xI p) => Build_shr_record (Zpos p) true s
| Zneg xH => Build_shr_record Z0 true s
| Zneg (xO p) => Build_shr_record (Zneg p) false s
| Zneg (xI p) => Build_shr_record (Zneg p) true s
end.
Definition loc_of_shr_record mrs :=
match mrs with
| Build_shr_record _ false false => loc_Exact
| Build_shr_record _ false true => loc_Inexact Lt
| Build_shr_record _ true false => loc_Inexact Eq
| Build_shr_record _ true true => loc_Inexact Gt
end.
Definition shr_record_of_loc m l :=
match l with
| loc_Exact => Build_shr_record m false false
| loc_Inexact Lt => Build_shr_record m false true
| loc_Inexact Eq => Build_shr_record m true false
| loc_Inexact Gt => Build_shr_record m true true
end.
Definition shr mrs e n :=
match n with
| Zpos p => (iter_pos shr_1 p mrs, Z.add e n)
| _ => (mrs, e)
end.
Definition shr_fexp m e l :=
shr (shr_record_of_loc m l) e (Z.sub (fexp (Z.add (Zdigits2 m) e)) e).
Definition round_nearest_even mx lx :=
match lx with
| loc_Exact => mx
| loc_Inexact Lt => mx
| loc_Inexact Eq => if Z.even mx then mx else Z.add mx (Zpos 1)
| loc_Inexact Gt => Z.add mx (Zpos 1)
end.
Definition binary_round_aux sx mx ex lx :=
let '(mrs', e') := shr_fexp mx ex lx in
let '(mrs'', e'') := shr_fexp (round_nearest_even (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
match shr_m mrs'' with
| Z0 => S754_zero sx
| Zpos m => if Z.leb e'' (Z.sub emax prec) then S754_finite sx m e'' else S754_infinity sx
| _ => S754_nan
end.
Definition shl_align mx ex ex' :=
match Z.sub ex' ex with
| Zneg d => (Pos.iter xO mx d, ex')
| _ => (mx, ex)
end.
Definition binary_round sx mx ex :=
let '(mz, ez) := shl_align mx ex (fexp (Z.add (Zpos (digits2_pos mx)) ex))in
binary_round_aux sx (Zpos mz) ez loc_Exact.
Definition binary_normalize m e szero :=
match m with
| Z0 => S754_zero szero
| Zpos m => binary_round false m e
| Zneg m => binary_round true m e
end.
End Rounding.
Variable prec emax : Z.
Definition emin := Z.sub (Z.sub (Zpos 3) emax) prec.
Definition fexp e := Z.max (Z.sub e prec) emin.
Section Zdigits2.
Fixpoint digits2_pos (n : positive) : positive :=
match n with
| xH => xH
| xO p => Pos.succ (digits2_pos p)
| xI p => Pos.succ (digits2_pos p)
end.
Definition Zdigits2 n :=
match n with
| Z0 => n
| Zpos p => Zpos (digits2_pos p)
| Zneg p => Zpos (digits2_pos p)
end.
End Zdigits2.
Section ValidBinary.
Definition canonical_mantissa m e :=
Z.eqb (fexp (Z.add (Zpos (digits2_pos m)) e)) e.
Definition bounded m e :=
andb (canonical_mantissa m e) (Z.leb e (Z.sub emax prec)).
Definition valid_binary x :=
match x with
| S754_finite _ m e => bounded m e
| _ => true
end.
End ValidBinary.
Section Iter.
Context {A : Type}.
Variable (f : A -> A).
Fixpoint iter_pos (n : positive) (x : A) {struct n} : A :=
match n with
| xI n' => iter_pos n' (iter_pos n' (f x))
| xO n' => iter_pos n' (iter_pos n' x)
| xH => f x
end.
End Iter.
Section Rounding.
Inductive location := loc_Exact | loc_Inexact : comparison -> location.
Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.
Definition shr_1 mrs :=
let '(Build_shr_record m r s) := mrs in
let s := orb r s in
match m with
| Z0 => Build_shr_record Z0 false s
| Zpos xH => Build_shr_record Z0 true s
| Zpos (xO p) => Build_shr_record (Zpos p) false s
| Zpos (xI p) => Build_shr_record (Zpos p) true s
| Zneg xH => Build_shr_record Z0 true s
| Zneg (xO p) => Build_shr_record (Zneg p) false s
| Zneg (xI p) => Build_shr_record (Zneg p) true s
end.
Definition loc_of_shr_record mrs :=
match mrs with
| Build_shr_record _ false false => loc_Exact
| Build_shr_record _ false true => loc_Inexact Lt
| Build_shr_record _ true false => loc_Inexact Eq
| Build_shr_record _ true true => loc_Inexact Gt
end.
Definition shr_record_of_loc m l :=
match l with
| loc_Exact => Build_shr_record m false false
| loc_Inexact Lt => Build_shr_record m false true
| loc_Inexact Eq => Build_shr_record m true false
| loc_Inexact Gt => Build_shr_record m true true
end.
Definition shr mrs e n :=
match n with
| Zpos p => (iter_pos shr_1 p mrs, Z.add e n)
| _ => (mrs, e)
end.
Definition shr_fexp m e l :=
shr (shr_record_of_loc m l) e (Z.sub (fexp (Z.add (Zdigits2 m) e)) e).
Definition round_nearest_even mx lx :=
match lx with
| loc_Exact => mx
| loc_Inexact Lt => mx
| loc_Inexact Eq => if Z.even mx then mx else Z.add mx (Zpos 1)
| loc_Inexact Gt => Z.add mx (Zpos 1)
end.
Definition binary_round_aux sx mx ex lx :=
let '(mrs', e') := shr_fexp mx ex lx in
let '(mrs'', e'') := shr_fexp (round_nearest_even (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
match shr_m mrs'' with
| Z0 => S754_zero sx
| Zpos m => if Z.leb e'' (Z.sub emax prec) then S754_finite sx m e'' else S754_infinity sx
| _ => S754_nan
end.
Definition shl_align mx ex ex' :=
match Z.sub ex' ex with
| Zneg d => (Pos.iter xO mx d, ex')
| _ => (mx, ex)
end.
Definition binary_round sx mx ex :=
let '(mz, ez) := shl_align mx ex (fexp (Z.add (Zpos (digits2_pos mx)) ex))in
binary_round_aux sx (Zpos mz) ez loc_Exact.
Definition binary_normalize m e szero :=
match m with
| Z0 => S754_zero szero
| Zpos m => binary_round false m e
| Zneg m => binary_round true m e
end.
End Rounding.
Definition SFopp x :=
match x with
| S754_nan => S754_nan
| S754_infinity sx => S754_infinity (negb sx)
| S754_finite sx mx ex => S754_finite (negb sx) mx ex
| S754_zero sx => S754_zero (negb sx)
end.
Definition SFabs x :=
match x with
| S754_nan => S754_nan
| S754_infinity sx => S754_infinity false
| S754_finite sx mx ex => S754_finite false mx ex
| S754_zero sx => S754_zero false
end.
Definition SFcompare f1 f2 :=
match f1, f2 with
| S754_nan , _ | _, S754_nan => None
| S754_infinity s1, S754_infinity s2 =>
Some match s1, s2 with
| true, true => Eq
| false, false => Eq
| true, false => Lt
| false, true => Gt
end
| S754_infinity s, _ => Some (if s then Lt else Gt)
| _, S754_infinity s => Some (if s then Gt else Lt)
| S754_finite s _ _, S754_zero _ => Some (if s then Lt else Gt)
| S754_zero _, S754_finite s _ _ => Some (if s then Gt else Lt)
| S754_zero _, S754_zero _ => Some Eq
| S754_finite s1 m1 e1, S754_finite s2 m2 e2 =>
Some match s1, s2 with
| true, false => Lt
| false, true => Gt
| false, false =>
match Z.compare e1 e2 with
| Lt => Lt
| Gt => Gt
| Eq => Pos.compare_cont Eq m1 m2
end
| true, true =>
match Z.compare e1 e2 with
| Lt => Gt
| Gt => Lt
| Eq => CompOpp (Pos.compare_cont Eq m1 m2)
end
end
end.
Definition SFeqb f1 f2 :=
match SFcompare f1 f2 with
| Some Eq => true
| _ => false
end.
Definition SFltb f1 f2 :=
match SFcompare f1 f2 with
| Some Lt => true
| _ => false
end.
Definition SFleb f1 f2 :=
match SFcompare f1 f2 with
| Some (Lt | Eq) => true
| _ => false
end.
Definition SFclassify f :=
match f with
| S754_nan => NaN
| S754_infinity false => PInf
| S754_infinity true => NInf
| S754_zero false => PZero
| S754_zero true => NZero
| S754_finite false m _ =>
if Z.eqb (Zpos (digits2_pos m)) prec then PNormal
else PSubn
| S754_finite true m _ =>
if Z.eqb (Zpos (digits2_pos m)) prec then NNormal
else NSubn
end.
Definition SFmul x y :=
match x, y with
| S754_nan, _ | _, S754_nan => S754_nan
| S754_infinity sx, S754_infinity sy => S754_infinity (xorb sx sy)
| S754_infinity sx, S754_finite sy _ _ => S754_infinity (xorb sx sy)
| S754_finite sx _ _, S754_infinity sy => S754_infinity (xorb sx sy)
| S754_infinity _, S754_zero _ => S754_nan
| S754_zero _, S754_infinity _ => S754_nan
| S754_finite sx _ _, S754_zero sy => S754_zero (xorb sx sy)
| S754_zero sx, S754_finite sy _ _ => S754_zero (xorb sx sy)
| S754_zero sx, S754_zero sy => S754_zero (xorb sx sy)
| S754_finite sx mx ex, S754_finite sy my ey =>
binary_round_aux (xorb sx sy) (Zpos (Pos.mul mx my)) (Z.add ex ey) loc_Exact
end.
Definition cond_Zopp (b : bool) m := if b then Z.opp m else m.
Definition SFadd x y :=
match x, y with
| S754_nan, _ | _, S754_nan => S754_nan
| S754_infinity sx, S754_infinity sy =>
match sx, sy with true, true | false, false => x | _, _ => S754_nan end
| S754_infinity _, _ => x
| _, S754_infinity _ => y
| S754_zero sx, S754_zero sy =>
match sx, sy with true, true | false, false => x | _, _ => S754_zero false end
| S754_zero _, _ => y
| _, S754_zero _ => x
| S754_finite sx mx ex, S754_finite sy my ey =>
let ez := Z.min ex ey in
binary_normalize (Z.add (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
ez false
end.
Definition SFsub x y :=
match x, y with
| S754_nan, _ | _, S754_nan => S754_nan
| S754_infinity sx, S754_infinity sy =>
match sx, sy with true, false | false, true => x | _, _ => S754_nan end
| S754_infinity _, _ => x
| _, S754_infinity sy => S754_infinity (negb sy)
| S754_zero sx, S754_zero sy =>
match sx, sy with true, false | false, true => x | _, _ => S754_zero false end
| S754_zero _, S754_finite sy my ey => S754_finite (negb sy) my ey
| _, S754_zero _ => x
| S754_finite sx mx ex, S754_finite sy my ey =>
let ez := Z.min ex ey in
binary_normalize (Z.sub (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
ez false
end.
Definition new_location_even nb_steps k :=
if Z.eqb k Z0 then loc_Exact
else loc_Inexact (Z.compare (Z.mul (Zpos 2) k) nb_steps).
Definition new_location_odd nb_steps k :=
if Z.eqb k Z0 then loc_Exact
else
loc_Inexact
match Z.compare (Z.add (Z.mul (Zpos 2) k) (Zpos 1)) nb_steps with
| Lt => Lt
| Eq => Lt
| Gt => Gt
end.
Definition new_location nb_steps :=
if Z.even nb_steps then new_location_even nb_steps else new_location_odd nb_steps.
Definition SFdiv_core_binary m1 e1 m2 e2 :=
let d1 := Zdigits2 m1 in
let d2 := Zdigits2 m2 in
let e' := Z.min (fexp (Z.sub (Z.add d1 e1) (Z.add d2 e2))) (Z.sub e1 e2) in
let s := Z.sub (Z.sub e1 e2) e' in
let m' :=
match s with
| Zpos _ => Z.shiftl m1 s
| Z0 => m1
| Zneg _ => Z0
end in
let '(q, r) := Z.div_eucl m' m2 in
(q, e', new_location m2 r).
Definition SFdiv x y :=
match x, y with
| S754_nan, _ | _, S754_nan => S754_nan
| S754_infinity sx, S754_infinity sy => S754_nan
| S754_infinity sx, S754_finite sy _ _ => S754_infinity (xorb sx sy)
| S754_finite sx _ _, S754_infinity sy => S754_zero (xorb sx sy)
| S754_infinity sx, S754_zero sy => S754_infinity (xorb sx sy)
| S754_zero sx, S754_infinity sy => S754_zero (xorb sx sy)
| S754_finite sx _ _, S754_zero sy => S754_infinity (xorb sx sy)
| S754_zero sx, S754_finite sy _ _ => S754_zero (xorb sx sy)
| S754_zero sx, S754_zero sy => S754_nan
| S754_finite sx mx ex, S754_finite sy my ey =>
let '(mz, ez, lz) := SFdiv_core_binary (Zpos mx) ex (Zpos my) ey in
binary_round_aux (xorb sx sy) mz ez lz
end.
Definition SFsqrt_core_binary m e :=
let d := Zdigits2 m in
let e' := Z.min (fexp (Z.div2 (Z.add (Z.add d e) (Zpos 1)))) (Z.div2 e) in
let s := Z.sub e (Z.mul (Zpos 2) e') in
let m' :=
match s with
| Zpos p => Z.shiftl m s
| Z0 => m
| Zneg _ => Z0
end in
let (q, r) := Z.sqrtrem m' in
let l :=
if Z.eqb r Z0 then loc_Exact
else loc_Inexact (if Z.leb r q then Lt else Gt) in
(q, e', l).
Definition SFsqrt x :=
match x with
| S754_nan => S754_nan
| S754_infinity false => x
| S754_infinity true => S754_nan
| S754_finite true _ _ => S754_nan
| S754_zero _ => x
| S754_finite false mx ex =>
let '(mz, ez, lz) := SFsqrt_core_binary (Zpos mx) ex in
binary_round_aux false mz ez lz
end.
Definition SFnormfr_mantissa f :=
match f with
| S754_finite _ mx ex =>
if Z.eqb ex (Z.opp prec) then Npos mx else N0
| _ => N0
end.
Definition SFldexp f e :=
match f with
| S754_finite sx mx ex => binary_round sx mx (Z.add ex e)
| _ => f
end.
Definition SFfrexp f :=
match f with
| S754_finite sx mx ex =>
if Z.leb prec (Zpos (digits2_pos mx)) then
(S754_finite sx mx (Z.opp prec), Z.add ex prec)
else
let d := Z.sub prec (Zpos (digits2_pos mx)) in
(S754_finite sx (Pos.iter xO mx (Z.to_pos d)) (Z.opp prec), Z.sub (Z.add ex prec) d)
| _ => (f, Z.sub (Z.mul (Zneg 2) emax) prec)
end.
Definition SFone := binary_round false 1 Z0.
Definition SFulp x := SFldexp SFone (fexp (snd (SFfrexp x))).
Definition SFpred_pos x :=
match x with
| S754_finite _ mx _ =>
let d :=
if Pos.eqb mx~0 (Pos.iter xO xH (Z.to_pos prec)) then
SFldexp SFone (fexp (Z.sub (snd (SFfrexp x)) (Zpos 1)))
else
SFulp x in
SFsub x d
| _ => x
end.
Definition SFmax_float :=
S754_finite false (Pos.sub (Pos.iter xO xH (Z.to_pos prec)) 1) (Z.sub emax prec).
Definition SFsucc x :=
match x with
| S754_zero _ => SFldexp SFone emin
| S754_infinity false => x
| S754_infinity true => SFopp SFmax_float
| S754_nan => x
| S754_finite false _ _ => SFadd x (SFulp x)
| S754_finite true _ _ => SFopp (SFpred_pos (SFopp x))
end.
Definition SFpred f := SFopp (SFsucc (SFopp f)).
End FloatOps.