Library Corelib.Init.Sumbool


Here are collected some results about the type sumbool (see INIT/Specif.v) sumbool A B, which is written {A}+{B}, is the informative disjunction "A or B", where A and B are logical propositions. Its extraction is isomorphic to the type of booleans.
A boolean is either true or false, and this is decidable

Require Import Logic Datatypes Specif.

Definition sumbool_of_bool (b : bool) : {b = true} + {b = false} :=
  if b return {b = true} + {b = false} then left eq_refl else right eq_refl.

#[global]
Hint Resolve sumbool_of_bool: bool.

Definition bool_eq_rec :
  forall (b:bool) (P:bool -> Set),
    (b = true -> P true) -> (b = false -> P false) -> P b :=
  fun b =>
    if b return forall P, (b = true -> P true) -> (b = false -> P false) -> P b
    then fun _ H _ => H eq_refl else fun _ _ H => H eq_refl.

Definition bool_eq_ind :
  forall (b:bool) (P:bool -> Prop),
    (b = true -> P true) -> (b = false -> P false) -> P b :=
  fun b =>
    if b return forall P, (b = true -> P true) -> (b = false -> P false) -> P b
    then fun _ H _ => H eq_refl else fun _ _ H => H eq_refl.

Logic connectives on type sumbool

Section connectives.

  Variables A B C D : Prop.

  Hypothesis H1 : {A} + {B}.
  Hypothesis H2 : {C} + {D}.

  Definition sumbool_and : {A /\ C} + {B \/ D} :=
    match H1, H2 with
    | left a, left c => left (conj a c)
    | left a, right d => right (or_intror d)
    | right b, left c => right (or_introl b)
    | right b, right d => right (or_intror d)
    end.

  Definition sumbool_or : {A \/ C} + {B /\ D} :=
    match H1, H2 with
    | left a, left c => left (or_intror c)
    | left a, right d => left (or_introl a)
    | right b, left c => left (or_intror c)
    | right b, right d => right (conj b d)
    end.

  Definition sumbool_not : {B} + {A} :=
    match H1 with
    | left a => right a
    | right b => left b
    end.

End connectives.

#[global]
Hint Resolve sumbool_and sumbool_or: core.
#[global]
Hint Immediate sumbool_not : core.

Any decidability function in type sumbool can be turned into a function returning a boolean with the corresponding specification:

Definition bool_of_sumbool (A B : Prop) :
    {A} + {B} -> {b : bool | if b then A else B} :=
  sumbool_rec _ (exist _ true) (exist _ false).
Arguments bool_of_sumbool : default implicits.