Module Vernacextend
Vernacular Extension data
type vernac_keep_as=|VtKeepAxiom|VtKeepDefined|VtKeepOpaquetype vernac_qed_type=|VtKeep of vernac_keep_as|VtDroptype vernac_when=|VtNow|VtLatertype vernac_classification=|VtStartProof of vernac_start|VtSideff of vernac_sideff_type|VtQed of vernac_qed_type|VtProofStep of{proof_block_detection : proof_block_name option;}|VtQuery|VtProofMode of string|VtMetaand vernac_start= opacity_guarantee * Names.Id.t listand vernac_sideff_type= Names.Id.t list * vernac_whenand opacity_guarantee=|GuaranteesOpacityOnly generates opaque terms at
Qed|Doesn'tGuaranteeOpacityMay generate transparent terms even with
Qed.and solving_tac= boola terminator
module InProg : sig ... endmodule OutProg : sig ... endmodule InProof : sig ... endmodule OutProof : sig ... endtype ('inprog, 'outprog, 'inproof, 'outproof) vernac_type={inprog : 'inprog InProg.t;outprog : 'outprog InProg.t;inproof : 'inproof InProof.t;outproof : 'outproof OutProof.t;}type typed_vernac=|TypedVernac :{inprog : 'inprog InProg.t;outprog : 'outprog OutProg.t;inproof : 'inproof InProof.t;outproof : 'outproof OutProof.t;run : pm:'inprog -> proof:'inproof -> 'outprog * 'outproof;}-> typed_vernac
val vtdefault : (unit -> unit) -> typed_vernacval vtnoproof : (unit -> unit) -> typed_vernacval vtcloseproof : (lemma:Declare.Proof.t -> pm:Declare.OblState.t -> Declare.OblState.t) -> typed_vernacval vtopenproof : (unit -> Declare.Proof.t) -> typed_vernacval vtmodifyproof : (pstate:Declare.Proof.t -> Declare.Proof.t) -> typed_vernacval vtreadproofopt : (pstate:Declare.Proof.t option -> unit) -> typed_vernacval vtreadproof : (pstate:Declare.Proof.t -> unit) -> typed_vernacval vtreadprogram : (pm:Declare.OblState.t -> unit) -> typed_vernacval vtmodifyprogram : (pm:Declare.OblState.t -> Declare.OblState.t) -> typed_vernacval vtdeclareprogram : (pm:Declare.OblState.t -> Declare.Proof.t) -> typed_vernacval vtopenproofprogram : (pm:Declare.OblState.t -> Declare.OblState.t * Declare.Proof.t) -> typed_vernac
type vernac_command= ?loc:Loc.t -> atts:Attributes.vernac_flags -> unit -> typed_vernactype plugin_args= Genarg.raw_generic_argument list
val type_vernac : Vernacexpr.extend_name -> plugin_args -> vernac_command
VERNAC EXTEND
type classifier= Genarg.raw_generic_argument list -> vernac_classificationtype (_, _) ty_sig=|TyNil : (vernac_command, vernac_classification) ty_sig|TyTerminal : string * ('r, 's) ty_sig -> ('r, 's) ty_sig|TyNonTerminal : ('a, 'b, 'c) Extend.ty_user_symbol * ('r, 's) ty_sig -> ('a -> 'r, 'a -> 's) ty_sigtype ty_ml=|TyML : bool * ('r, 's) ty_sig * 'r * 's option -> ty_ml
val vernac_extend : command:string -> ?classifier:(string -> vernac_classification) -> ?entry:Vernacexpr.vernac_expr Pcoq.Entry.t -> ty_ml list -> unitWrapper to dynamically extend vernacular commands.
VERNAC ARGUMENT EXTEND
type 'a argument_rule=|Arg_alias of 'a Pcoq.Entry.tThis is used because CAMLP5 parser can be dumb about rule factorization, which sometimes requires two entries to be the same.
|Arg_rules of 'a Pcoq.Production.t listThere is a discrepancy here as we use directly extension rules and thus entries instead of ty_user_symbol and thus arguments as roots.
type 'a vernac_argument={arg_printer : Environ.env -> Evd.evar_map -> 'a -> Pp.t;arg_parsing : 'a argument_rule;}
val vernac_argument_extend : name:string -> 'a vernac_argument -> ('a, unit, unit) Genarg.genarg_type * 'a Pcoq.Entry.tval get_vernac_classifier : Vernacexpr.extend_name -> classifierSTM classifiers
val classify_as_query : vernac_classificationStandard constant classifiers
val classify_as_sideeff : vernac_classificationval classify_as_proofstep : vernac_classification