Module Cc_plugin.Ccproof
type rule=|Ax of Ccalgo.axiomif ⊢ t = u :: A, then ⊢ t = u :: A
|SymAx of Ccalgo.axiomif ⊢ t = u : A, then ⊢ u = t :: A
|Refl of Ccalgo.ATerm.t|Trans of proof * proof⊢ t = u :: A -> ⊢ u = v :: A -> ⊢ t = v :: A
|Congr of proof * proof⊢ f = g :: forall x : A, B -> ⊢ t = u :: A -> f t = g u :: B
tAssumes that Bt≡ Bufor this to make sense!|Inject of proof * Constr.pconstructor * int * int⊢ ci v = ci w :: Ind(args) -> ⊢ v = w :: T where T is the type of the n-th argument of ci, assuming they coincide
and proof= private{p_lhs : Ccalgo.ATerm.t;p_rhs : Ccalgo.ATerm.t;p_rule : rule;}
val build_proof : Environ.env -> Evd.evar_map -> Ccalgo.forest -> [ `Discr of int * Ccalgo.pa_constructor * int * Ccalgo.pa_constructor | `Prove of int * int ] -> proof