PConstraintstype t = Sorts.ElimConstraints.t * Univ.UnivConstraints.ttype pconstraints = tStands for prenex sort poly constraints
val make : Sorts.ElimConstraints.t -> Univ.UnivConstraints.t -> tval empty : tval is_empty : t -> boolval qualities : t -> Sorts.ElimConstraints.tval univs : t -> Univ.UnivConstraints.tval of_qualities : Sorts.ElimConstraints.t -> tval of_univs : Univ.UnivConstraints.t -> tval set_qualities : Sorts.ElimConstraints.t -> t -> tval set_univs : Univ.UnivConstraints.t -> t -> tval add_quality : Sorts.ElimConstraint.t -> t -> tval add_univ : Univ.UnivConstraint.t -> t -> tval elements : t -> Sorts.ElimConstraint.t list * Univ.UnivConstraint.t listval filter_qualities : (Sorts.ElimConstraints.elt -> bool) -> t -> tval filter_univs : (Univ.UnivConstraints.elt -> bool) -> t -> tval pr : (Sorts.QVar.t -> Pp.t) -> (Univ.Level.t -> Pp.t) -> t -> Pp.tval hcons : t Hashcons.ftype 'a constrained = 'a * tval constraints_of : 'a constrained -> tval enforce_eq_univ : Univ.Level.t constraint_functionval enforce_leq_univ : Univ.Level.t constraint_functionval enforce_eq_quality : Sorts.Quality.t constraint_functionval enforce_elim_to : Sorts.Quality.t constraint_functionval fold : ((Sorts.ElimConstraint.t -> 'a -> 'a) * (Univ.UnivConstraint.t -> 'b -> 'b)) -> t -> ('a * 'b) -> 'a * 'bPolymorphic contexts (as sets)
A set of qualities and universes with polymorphic PConstraints.t. We linearize the set to a list after typechecking. Beware, representation could change.
module ContextSet : sig ... endtype 'a in_poly_context_set = 'a * ContextSet.t