Chapter 19 Canonical Structures
Assia Mahboubi and Enrico Tassi
This chapter explains the basics of Canonical Structure and how thy can be used to overload notations and build a hierarchy of algebraic structures. The examples are taken from [103]. We invite the interested reader to refer to this paper for all the details that are omitted here for brevity. The interested reader shall also find in [76] a detailed description of another, complementary, use of Canonical Structures: advanced proof search. This latter papers also presents many techniques one can employ to tune the inference of Canonical Structures.
19.1 Notation overloading
We build an infix notation == for a comparison predicate. Such notation will be overloaded, and its meaning will depend on the types of the terms that are compared.
Interactive Module EQ started
Coq < Record class (T : Type) := Class { cmp : T -> T -> Prop }.
class is defined
cmp is defined
Coq < Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined
Coq < Definition op (e : type) : obj e -> obj e -> Prop :=
let 'Pack _ (Class _ the_cmp) := e in the_cmp.
op is defined
Coq < Check op.
op
: forall e : type, obj e -> obj e -> Prop
Coq < Arguments op {e} x y : simpl never.
Coq < Arguments Class {T} cmp.
Coq < Module theory.
Interactive Module theory started
Coq < Notation "x == y" := (op x y) (at level 70).
Coq < End theory.
Module theory is defined
Coq < End EQ.
Module EQ is defined
We use Coq modules as name spaces. This allows us to follow the same pattern and naming convention for the rest of the chapter. The base name space contains the definitions of the algebraic structure. To keep the example small, the algebraic structure EQ.type we are defining is very simplistic, and characterizes terms on which a binary relation is defined, without requiring such relation to validate any property. The inner theory module contains the overloaded notation == and will eventually contain lemmas holding on all the instances of the algebraic structure (in this case there are no lemmas).
Note that in practice the user may want to declare EQ.obj as a coercion, but we will not do that here.
The following line tests that, when we assume a type e that is in the EQ class, then we can relates two of its objects with ==.
Coq < Check forall (e : EQ.type) (a b : EQ.obj e), a == b.
forall (e : EQ.type) (a b : EQ.obj e), a == b
: Prop
Still, no concrete type is in the EQ class. We amend that by equipping nat with a comparison relation.
The command has indeed failed with message:
The term "3" has type "nat" while it is expected to have type
"EQ.obj ?e".
Coq < Definition nat_eq (x y : nat) := nat_compare x y = Eq.
nat_eq is defined
Coq < Definition nat_EQcl : EQ.class nat := EQ.Class nat_eq.
nat_EQcl is defined
Coq < Canonical Structure nat_EQty : EQ.type := EQ.Pack nat nat_EQcl.
nat_EQty is defined
Coq < Check 3 == 3.
3 == 3
: Prop
Coq < Eval compute in 3 == 4.
= Lt = Eq
: Prop
This last test shows that Coq is now not only able to typecheck 3==3, but also that the infix relation was bound to the nat_eq relation. This relation is selected whenever == is used on terms of type nat. This can be read in the line declaring the canonical structure nat_EQty, where the first argument to Pack is the key and its second argument a group of canonical values associated to the key. In this case we associate to nat only one canonical value (since its class, nat_EQcl has just one member). The use of the projection op requires its argument to be in the class EQ, and uses such a member (function) to actually compare its arguments.
Similarly, we could equip any other type with a comparison relation, and use the == notation on terms of this type.
19.1.1 Derived Canonical Structures
We know how to use == on base types, like nat, bool, Z. Here we show how to deal with type constructors, i.e. how to make the following example work:
The command has indeed failed with message:
In environment
e : EQ.type
a : EQ.obj e
b : EQ.obj e
The term "(a, b)" has type "(EQ.obj e * EQ.obj e)%type"
while it is expected to have type "EQ.obj ?e".
The error message is telling that Coq has no idea on how to compare pairs of objects. The following construction is telling Coq exactly how to do that.
fst x == fst y /\ snd x == snd y.
pair_eq is defined
Coq < Definition pair_EQcl e1 e2 := EQ.Class (pair_eq e1 e2).
pair_EQcl is defined
Coq < Canonical Structure pair_EQty (e1 e2 : EQ.type) : EQ.type :=
EQ.Pack (EQ.obj e1 * EQ.obj e2) (pair_EQcl e1 e2).
pair_EQty is defined
Coq < Check forall (e : EQ.type) (a b : EQ.obj e), (a,b) == (a,b).
forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b)
: Prop
Coq < Check forall n m : nat, (3,4) == (n,m).
forall n m : nat, (3, 4) == (n, m)
: Prop
Thanks to the pair_EQty declaration, Coq is able to build a comparison relation for pairs whenever it is able to build a comparison relation for each component of the pair. The declaration associates to the key * (the type constructor of pairs) the canonical comparison relation pair_eq whenever the type constructor * is applied to two types being themselves in the EQ class.
19.2 Hierarchy of structures
To get to an interesting example we need another base class to be available. We choose the class of types that are equipped with an order relation, to which we associate the infix <= notation.
Interactive Module LE started
Coq < Record class T := Class { cmp : T -> T -> Prop }.
class is defined
cmp is defined
Coq < Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined
Coq < Definition op (e : type) : obj e -> obj e -> Prop :=
let 'Pack _ (Class _ f) := e in f.
op is defined
Coq < Arguments op {_} x y : simpl never.
Coq < Arguments Class {T} cmp.
Coq < Module theory.
Interactive Module theory started
Coq < Notation "x <= y" := (op x y) (at level 70).
Coq < End theory.
Module theory is defined
Coq < End LE.
Module LE is defined
As before we register a canonical LE class for nat.
Coq < Definition nat_le x y := nat_compare x y <> Gt.
nat_le is defined
Coq < Definition nat_LEcl : LE.class nat := LE.Class nat_le.
nat_LEcl is defined
Coq < Canonical Structure nat_LEty : LE.type := LE.Pack nat nat_LEcl.
nat_LEty is defined
And we enable Coq to relate pair of terms with <=.
fst x <= fst y /\ snd x <= snd y.
pair_le is defined
Coq < Definition pair_LEcl e1 e2 := LE.Class (pair_le e1 e2).
pair_LEcl is defined
Coq < Canonical Structure pair_LEty (e1 e2 : LE.type) : LE.type :=
LE.Pack (LE.obj e1 * LE.obj e2) (pair_LEcl e1 e2).
pair_LEty is defined
Coq < Check (3,4,5) <= (3,4,5).
(3, 4, 5) <= (3, 4, 5)
: Prop
At the current stage we can use == and <= on concrete types, like tuples of natural numbers, but we can’t develop an algebraic theory over the types that are equipped with both relations.
2 <= 3 /\ 2 == 2
: Prop
Coq < Fail Check forall (e : EQ.type) (x y : EQ.obj e), x <= y -> y <= x -> x == y.
The command has indeed failed with message:
In environment
e : EQ.type
x : EQ.obj e
y : EQ.obj e
The term "x" has type "EQ.obj e" while it is expected to have type
"LE.obj ?e".
Coq < Fail Check forall (e : LE.type) (x y : LE.obj e), x <= y -> y <= x -> x == y.
The command has indeed failed with message:
In environment
e : LE.type
x : LE.obj e
y : LE.obj e
The term "x" has type "LE.obj e" while it is expected to have type
"EQ.obj ?e".
We need to define a new class that inherits from both EQ and LE.
Interactive Module LEQ started
Coq < Record mixin (e : EQ.type) (le : EQ.obj e -> EQ.obj e -> Prop) :=
Mixin { compat : forall x y : EQ.obj e, le x y /\ le y x <-> x == y }.
mixin is defined
compat is defined
Coq < Record class T := Class {
EQ_class : EQ.class T;
LE_class : LE.class T;
extra : mixin (EQ.Pack T EQ_class) (LE.cmp T LE_class) }.
class is defined
EQ_class is defined
LE_class is defined
extra is defined
Coq < Structure type := _Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined
Coq < Arguments Mixin {e le} _.
Coq < Arguments Class {T} _ _ _.
The mixin component of the LEQ class contains all the extra content we are adding to EQ and LE. In particular it contains the requirement that the two relations we are combining are compatible.
Unfortunately there is still an obstacle to developing the algebraic theory of this new class.
Interactive Module theory started
Coq < Fail Check forall (le : type) (n m : obj le), n <= m -> n <= m -> n == m.
The command has indeed failed with message:
In environment
le : type
n : obj le
m : obj le
The term "n" has type "obj le" while it is expected to have type
"LE.obj ?e".
The problem is that the two classes LE and LEQ are not yet related by a subclass relation. In other words Coq does not see that an object of the LEQ class is also an object of the LE class.
The following two constructions tell Coq how to canonically build the LE.type and EQ.type structure given an LEQ.type structure on the same type.
EQ.Pack (obj e) (EQ_class _ (class_of e)).
to_EQ is defined
Coq < Canonical Structure to_EQ.
Coq < Definition to_LE (e : type) : LE.type :=
LE.Pack (obj e) (LE_class _ (class_of e)).
to_LE is defined
Coq < Canonical Structure to_LE.
We can now formulate out first theorem on the objects of the LEQ structure.
1 subgoal
e : type
x, y : obj e
============================
x <= y -> y <= x -> x == y
Coq < now intros; apply (compat _ _ (extra _ (class_of e)) x y); split. Qed.
No more subgoals.
now (intros; apply (compat _ _ (extra _ (class_of e)) x y); split).
Qed.
lele_eq is defined
Coq < Arguments lele_eq {e} x y _ _.
Coq < End theory.
Module theory is defined
Coq < End LEQ.
Module LEQ is defined
Coq < Import LEQ.theory.
Coq < Check lele_eq.
lele_eq
: forall x y : LEQ.obj ?e, x <= y -> y <= x -> x == y
where
?e : [ |- LEQ.type]
Of course one would like to apply results proved in the algebraic setting to any concrete instate of the algebraic structure.
1 subgoal
n, m : nat
============================
n <= m -> m <= n -> n == m
Coq < Fail apply (lele_eq n m). Abort.
The command has indeed failed with message:
In environment
n, m : nat
The term "n" has type "nat" while it is expected to have type
"LEQ.obj ?e".
1 subgoal
n, m : nat
============================
n <= m -> m <= n -> n == m
Coq < Example test_algebraic2 (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2) :
n <= m -> m <= n -> n == m.
1 subgoal
l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m -> m <= n -> n == m
Coq < Fail apply (lele_eq n m). Abort.
The command has indeed failed with message:
In environment
l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
The term "n" has type "(LEQ.obj l1 * LEQ.obj l2)%type"
while it is expected to have type "LEQ.obj ?e".
1 subgoal
l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m -> m <= n -> n == m
Again one has to tell Coq that the type nat is in the LEQ class, and how the type constructor * interacts with the LEQ class. In the following proofs are omitted for brevity.
1 subgoal
n, m : nat
============================
n <= m /\ m <= n <-> n == m
nat_LEQmx is defined
Coq < Lemma pair_LEQ_compat (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2) :
n <= m /\ m <= n <-> n == m.
1 subgoal
l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m /\ m <= n <-> n == m
pair_LEQmx is defined
The following script registers an LEQ class for nat and for the type constructor *. It also tests that they work as expected.
Unfortunately, these declarations are very verbose. In the following subsection we show how to make these declaration more compact.
Interactive Module Add_instance_attempt started
Coq < Canonical Structure nat_LEQty : LEQ.type :=
LEQ._Pack nat (LEQ.Class nat_EQcl nat_LEcl nat_LEQmx).
nat_LEQty is defined
Coq < Canonical Structure pair_LEQty (l1 l2 : LEQ.type) : LEQ.type :=
LEQ._Pack (LEQ.obj l1 * LEQ.obj l2)
(LEQ.Class
(EQ.class_of (pair_EQty (to_EQ l1) (to_EQ l2)))
(LE.class_of (pair_LEty (to_LE l1) (to_LE l2)))
(pair_LEQmx l1 l2)).
pair_LEQty is defined
Warning: Ignoring canonical projection to LEQ.Class by LEQ.class_of in
pair_LEQty: redundant with nat_LEQty
Coq < Example test_algebraic (n m : nat) : n <= m -> m <= n -> n == m.
1 subgoal
n, m : nat
============================
n <= m -> m <= n -> n == m
Coq < now apply (lele_eq n m). Qed.
No more subgoals.
now (apply (lele_eq n m)).
Qed.
test_algebraic is defined
Coq < Example test_algebraic2 (n m : nat * nat) : n <= m -> m <= n -> n == m.
1 subgoal
n, m : nat * nat
============================
n <= m -> m <= n -> n == m
Coq < now apply (lele_eq n m). Qed.
No more subgoals.
now (apply (lele_eq n m)).
Qed.
test_algebraic2 is defined
Coq < End Add_instance_attempt.
Module Add_instance_attempt is defined
Note that no direct proof of n <= m -> m <= n -> n == m is provided by the user for n and m of type nat * nat. What the user provides is a proof of this statement for n and m of type nat and a proof that the pair constructor preserves this property. The combination of these two facts is a simple form of proof search that Coq performs automatically while inferring canonical structures.
19.2.1 Compact declaration of Canonical Structures
We need some infrastructure for that.
Coq < Module infrastructure.
Interactive Module infrastructure started
Coq < Inductive phantom {T : Type} (t : T) : Type := Phantom.
phantom is defined
phantom_rect is defined
phantom_ind is defined
phantom_rec is defined
Coq < Definition unify {T1 T2} (t1 : T1) (t2 : T2) (s : option string) :=
phantom t1 -> phantom t2.
unify is defined
Coq < Definition id {T} {t : T} (x : phantom t) := x.
id is defined
Coq < Notation "[find v | t1 ~ t2 ] p" := (fun v (_ : unify t1 t2 None) => p)
(at level 50, v ident, only parsing).
Coq < Notation "[find v | t1 ~ t2 | s ] p" := (fun v (_ : unify t1 t2 (Some s)) => p)
(at level 50, v ident, only parsing).
Coq < Notation "'Error : t : s" := (unify _ t (Some s))
(at level 50, format "''Error' : t : s").
Coq < Open Scope string_scope.
Coq < End infrastructure.
Module infrastructure is defined
To explain the notation [find v | t1 ~t2] let us pick one of its instances: [find e | EQ.obj e ~T | "is not an EQ.type" ]. It should be read as: “find a class e such that its objects have type T or fail with message "T is not an EQ.type"”.
The other utilities are used to ask Coq to solve a specific unification problem, that will in turn require the inference of some canonical structures. They are explained in mode details in [103].
We now have all we need to create a compact “packager” to declare instances of the LEQ class.
Coq < Definition packager T e0 le0 (m0 : LEQ.mixin e0 le0) :=
[find e | EQ.obj e ~ T | "is not an EQ.type" ]
[find o | LE.obj o ~ T | "is not an LE.type" ]
[find ce | EQ.class_of e ~ ce ]
[find co | LE.class_of o ~ co ]
[find m | m ~ m0 | "is not the right mixin" ]
LEQ._Pack T (LEQ.Class ce co m).
packager is defined
Coq < Notation Pack T m := (packager T _ _ m _ id _ id _ id _ id _ id).
The object Pack takes a type T (the key) and a mixin m. It infers all the other pieces of the class LEQ and declares them as canonical values associated to the T key. All in all, the only new piece of information we add in the LEQ class is the mixin, all the rest is already canonical for T and hence can be inferred by Coq.
Pack is a notation, hence it is not type checked at the time of its declaration. It will be type checked when it is used, an in that case T is going to be a concrete type. The odd arguments _ and id we pass to the packager represent respectively the classes to be inferred (like e, o, etc) and a token (id) to force their inference. Again, for all the details the reader can refer to [103].
The declaration of canonical instances can now be way more compact:
nat_LEQty is defined
Coq < Canonical Structure pair_LEQty (l1 l2 : LEQ.type) :=
Eval hnf in Pack (LEQ.obj l1 * LEQ.obj l2) (pair_LEQmx l1 l2).
pair_LEQty is defined
Warning: Ignoring canonical projection to LEQ.Class by LEQ.class_of in
pair_LEQty: redundant with nat_LEQty
Error messages are also quite intelligible (if one skips to the end of the message).
The command has indeed failed with message:
The term "id" has type "phantom (EQ.obj ?t) -> phantom (EQ.obj ?t)"
while it is expected to have type
"'Error : bool : "is not an EQ.type"".