Library Coq.Numbers.Integer.Abstract.ZDivEucl
From Coq.Numbers.Integer.Abstract Require Import ZAxioms ZMulOrder ZSgnAbs.
From Coq.Numbers.NatInt Require Import NZDiv.
Euclidean Division for integers, Euclid convention
Module Type EuclidSpec (Import A : ZAxiomsSig')(Import B : DivMod A).
Axiom mod_always_pos : forall a b, b ~= 0 -> 0 <= B.modulo a b < abs b.
End EuclidSpec.
Module Type ZEuclid (Z:ZAxiomsSig) := NZDiv.NZDiv Z <+ EuclidSpec Z.
Module ZEuclidProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B)
(Import D : ZEuclid A).
We put notations in a scope, to avoid warnings about
redefinitions of notations
Declare Scope euclid.
Infix "/" := D.div : euclid.
Infix "mod" := D.modulo : euclid.
Local Open Scope euclid.
Module Import Private_NZDiv := Nop <+ NZDivProp A D B.
Infix "/" := D.div : euclid.
Infix "mod" := D.modulo : euclid.
Local Open Scope euclid.
Module Import Private_NZDiv := Nop <+ NZDivProp A D B.
Another formulation of the main equation
Lemma mod_eq :
forall a b, b~=0 -> a mod b == a - b*(a/b).
Ltac pos_or_neg a :=
let LT := fresh "LT" in
let LE := fresh "LE" in
destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].
Uniqueness theorems
Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
0<=r1<abs b -> 0<=r2<abs b ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Theorem div_unique:
forall a b q r, 0<=r<abs b -> a == b*q + r -> q == a/b.
Theorem mod_unique:
forall a b q r, 0<=r<abs b -> a == b*q + r -> r == a mod b.
Sign rules
Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b).
Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b.
Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
(-a)/b == -(a/b).
Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a)/b == -(a/b)-sgn b.
Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
(-a) mod b == 0.
Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a) mod b == abs b - (a mod b).
Lemma div_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
(-a)/(-b) == a/b.
Lemma div_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a)/(-b) == a/b + sgn(b).
Lemma mod_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
(-a) mod (-b) == 0.
Lemma mod_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
(-a) mod (-b) == abs b - a mod b.
A division by itself returns 1
A division of a small number by a bigger one yields zero.
Same situation, in term of modulo:
Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
Lemma div_1_r: forall a, a/1 == a.
Lemma mod_1_r: forall a, a mod 1 == 0.
Lemma div_1_l: forall a, 1<a -> 1/a == 0.
Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
Theorem div_unique_exact a b q: b~=0 -> a == b*q -> q == a/b.
Theorem mod_le: forall a b, 0<=a -> b~=0 -> a mod b <= a.
Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a<abs b).
Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<abs b).
As soon as the divisor is strictly greater than 1,
the division is strictly decreasing.
le is compatible with a positive division.
In this convention, div performs Rounding-Toward-Bottom
when divisor is positive, and Rounding-Toward-Top otherwise.
Since we cannot speak of rational values here, we express this
fact by multiplying back by b, and this leads to a nice
unique statement.
Giving a reversed bound is slightly more complex
Lemma mul_succ_div_gt: forall a b, 0<b -> a < b*(S (a/b)).
Lemma mul_pred_div_gt: forall a b, b<0 -> a < b*(P (a/b)).
NB: The three previous properties could be used as
specifications for div.
Inequality mul_div_le is exact iff the modulo is zero.
Some additional inequalities about div.
Theorem div_lt_upper_bound:
forall a b q, 0<b -> a < b*q -> a/b < q.
Theorem div_le_upper_bound:
forall a b q, 0<b -> a <= b*q -> a/b <= q.
Theorem div_le_lower_bound:
forall a b q, 0<b -> b*q <= a -> q <= a/b.
A division respects opposite monotonicity for the divisor
Lemma mod_add : forall a b c, c~=0 ->
(a + b * c) mod c == a mod c.
Lemma div_add : forall a b c, c~=0 ->
(a + b * c) / c == a / c + b.
Lemma div_add_l: forall a b c, b~=0 ->
(a * b + c) / b == a + c / b.
Cancellations.
With the current convention, the following isn't always true
when c<0: -3*-1 / -2*-1 = 3/2 = 1 while -3/-2 = 2
Lemma div_mul_cancel_r : forall a b c, b~=0 -> 0<c ->
(a*c)/(b*c) == a/b.
Lemma div_mul_cancel_l : forall a b c, b~=0 -> 0<c ->
(c*a)/(c*b) == a/b.
Lemma mul_mod_distr_l: forall a b c, b~=0 -> 0<c ->
(c*a) mod (c*b) == c * (a mod b).
Lemma mul_mod_distr_r: forall a b c, b~=0 -> 0<c ->
(a*c) mod (b*c) == (a mod b) * c.
Operations modulo.
Theorem mod_mod: forall a n, n~=0 ->
(a mod n) mod n == a mod n.
Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
((a mod n)*b) mod n == (a*b) mod n.
Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
(a*(b mod n)) mod n == (a*b) mod n.
Theorem mul_mod: forall a b n, n~=0 ->
(a * b) mod n == ((a mod n) * (b mod n)) mod n.
Lemma add_mod_idemp_l : forall a b n, n~=0 ->
((a mod n)+b) mod n == (a+b) mod n.
Lemma add_mod_idemp_r : forall a b n, n~=0 ->
(a+(b mod n)) mod n == (a+b) mod n.
Theorem add_mod: forall a b n, n~=0 ->
(a+b) mod n == (a mod n + b mod n) mod n.
With the current convention, the following result isn't always
true with a negative intermediate divisor. For instance
3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) and
3/(-2)/2 = -1 <> 0 = 3 / (-2*2) .
Similarly, the following result doesn't always hold when b<0.
For instance 3 mod (-2*-2)) = 3 while
3 mod (-2) + (-2)*((3/-2) mod -2) = -1.
Lemma mod_mul_r : forall a b c, 0<b -> c~=0 ->
a mod (b*c) == a mod b + b*((a/b) mod c).
Lemma mod_div: forall a b, b~=0 ->
a mod b / b == 0.
A last inequality:
mod is related to divisibility