UGraphval type_in_type : t -> boolWhen type_in_type, functions adding constraints do not fail and may instead ignore inconsistent constraints.
Checking functions such as check_leq always return true.
type 'a check_function = t -> 'a -> 'a -> boolval check_leq : Univ.Universe.t check_functionval check_eq : Univ.Universe.t check_functionval check_eq_level : Univ.Level.t check_functionval initial_universes : tThe initial graph of universes: Prop < Set
Initial universes, but keeping options such as type in type from the argument.
val check_eq_instances : UVars.Instance.t check_functionCheck equality of instances w.r.t. a universe graph
Merge of constraints in a universes graph. The function merge_constraints merges a set of constraints in a given universes graph. It raises the exception UniverseInconsistency if the constraints are not satisfiable.
type univ_variable_printers = (Sorts.QVar.t -> Pp.t) * (Univ.Level.t -> Pp.t)type univ_inconsistency = univ_variable_printers option * (Univ.constraint_type * Sorts.t * Sorts.t * explanation option)exception UniverseInconsistency of univ_inconsistencyval enforce_constraint : Univ.univ_constraint -> t -> tval merge_constraints : Univ.Constraints.t -> t -> tval check_constraint : t -> Univ.univ_constraint -> boolval check_constraints : Univ.Constraints.t -> t -> boolval enforce_leq_alg : Univ.Universe.t -> Univ.Universe.t -> t -> Univ.Constraints.t * tAdds a universe to the graph, ensuring it is >= or > Set.
module Bound : sig ... endval add_universe : Univ.Level.t -> lbound:Bound.t -> strict:bool -> t -> texception UndeclaredLevel of Univ.Level.tCheck that the universe levels are declared. Otherwise
val check_declared_universes : t -> Univ.Level.Set.t -> unitval empty_universes : tThe empty graph of universes
val constraints_of_universes : t -> Univ.Constraints.t * Univ.Level.Set.t listconstraints_of_universes g returns csts and partition where csts are the non-Eq constraints and partition is the partition of the universes into equivalence classes.
val choose : (Univ.Level.t -> bool) -> t -> Univ.Level.t -> Univ.Level.t optionchoose p g u picks a universe verifying p and equal to u in g.
val constraints_for : kept:Univ.Level.Set.t -> t -> Univ.Constraints.tconstraints_for ~kept g returns the constraints about the universes kept in g up to transitivity.
eg if g is a <= b <= c then constraints_for ~kept:{a, c} g is a <= c.
val domain : t -> Univ.Level.Set.tKnown universes
val check_subtype : UVars.AbstractContext.t check_functioncheck_subtype univ ctx1 ctx2 checks whether ctx2 is an instance of ctx1.
type node = | Alias of Univ.Level.t | |
| Node of bool Univ.Level.Map.t | (* Nodes v s.t. u < v (true) or u <= v (false) *) |
val repr : t -> node Univ.Level.Map.tval pr_universes : (Univ.Level.t -> Pp.t) -> node Univ.Level.Map.t -> Pp.tval explain_universe_inconsistency : (Sorts.QVar.t -> Pp.t) -> (Univ.Level.t -> Pp.t) -> univ_inconsistency -> Pp.tval check_universes_invariants : t -> unitDebugging