UnivSubsttype 'a universe_map = 'a Univ.Level.Map.ttype universe_subst = Univ.Universe.t universe_maptype universe_subst_fn = Univ.Level.t -> Univ.Universe.t optiontype universe_level_subst_fn = Univ.Level.t -> Univ.Level.tval level_subst_of : universe_subst_fn -> universe_level_subst_fnThe resulting function must never be called on a level which would produce an algebraic.
val subst_univs_constraints : 
  universe_subst_fn ->
  Univ.Constraints.t ->
  Univ.Constraints.tval subst_instance : 
  universe_level_subst_fn ->
  Univ.Instance.t ->
  Univ.Instance.ttype universe_opt_subst = Univ.Universe.t option universe_mapval normalize_univ_variables : 
  universe_opt_subst ->
  universe_opt_subst * Univ.Level.Set.t * universe_substval normalize_univ_variable_opt_subst : 
  universe_opt_subst ->
  Univ.Level.t ->
  Univ.Universe.t optionval normalize_universe_opt_subst : 
  universe_opt_subst ->
  Univ.Universe.t ->
  Univ.Universe.tval normalize_opt_subst : universe_opt_subst -> universe_opt_substval nf_binder_annot : 
  ( Sorts.relevance -> Sorts.relevance ) ->
  'a Context.binder_annot ->
  'a Context.binder_annotFull universes substitutions into terms
val nf_evars_and_universes_opt_subst : 
  ( Constr.existential -> Constr.constr option ) ->
  ( Univ.Level.t -> Univ.Level.t ) ->
  ( Sorts.t -> Sorts.t ) ->
  ( Sorts.relevance -> Sorts.relevance ) ->
  Constr.constr ->
  Constr.constrval subst_univs_universe : 
  ( Univ.Level.t -> Univ.Universe.t option ) ->
  Univ.Universe.t ->
  Univ.Universe.tval pr_universe_subst : ( Univ.Level.t -> Pp.t ) -> universe_subst -> Pp.tval enforce_eq : Univ.Universe.t Univ.constraint_functionval enforce_leq : Univ.Universe.t Univ.constraint_functionval enforce_eq_sort : 
  Sorts.t ->
  Sorts.t ->
  Univ.Constraints.t ->
  Univ.Constraints.tval enforce_leq_sort : 
  Sorts.t ->
  Sorts.t ->
  Univ.Constraints.t ->
  Univ.Constraints.tval enforce_leq_alg_sort : 
  Sorts.t ->
  Sorts.t ->
  UGraph.t ->
  Univ.Constraints.t * UGraph.tPicks an arbitrary set of constraints sufficient to ensure u <= v.