UnivSubsttype 'a universe_map = 'a Univ.Level.Map.ttype universe_subst = Univ.Universe.t universe_maptype universe_subst_fn = Univ.Level.t -> Univ.Universe.ttype universe_level_subst_fn = Univ.Level.t -> Univ.Level.tval level_subst_of : universe_subst_fn -> universe_level_subst_fnval subst_univs_constraints : universe_subst_fn -> Univ.Constraints.t -> Univ.Constraints.tval subst_instance : universe_level_subst_fn -> Univ.Instance.t -> Univ.Instance.ttype universe_opt_subst = Univ.Universe.t option universe_mapval normalize_univ_variables : universe_opt_subst -> universe_opt_subst * Univ.Level.Set.t * universe_substval normalize_univ_variable_opt_subst : universe_opt_subst -> Univ.Level.t -> Univ.Universe.tval normalize_universe_opt_subst : universe_opt_subst -> Univ.Universe.t -> Univ.Universe.tval normalize_opt_subst : universe_opt_subst -> universe_opt_substFull universes substitutions into terms
val nf_evars_and_universes_opt_subst : (Constr.existential -> Constr.constr option) -> universe_opt_subst -> Constr.constr -> Constr.constrval subst_univs_universe : (Univ.Level.t -> Univ.Universe.t) -> Univ.Universe.t -> Univ.Universe.tval pr_universe_subst : universe_subst -> Pp.tval enforce_eq : Univ.Universe.t Univ.constraint_functionval enforce_leq : Univ.Universe.t Univ.constraint_functionval enforce_eq_sort : Sorts.t -> Sorts.t -> Univ.Constraints.t -> Univ.Constraints.tval enforce_leq_sort : Sorts.t -> Sorts.t -> Univ.Constraints.t -> Univ.Constraints.tval enforce_leq_alg_sort : Sorts.t -> Sorts.t -> UGraph.t -> Univ.Constraints.t * UGraph.tPicks an arbitrary set of constraints sufficient to ensure u <= v.