Inductivefind_m*type env sigma c coerce c to an recursive type (I args). find_rectype, find_inductive and find_coinductive respectively accepts any recursive type, only an inductive type and only a coinductive type. They raise Not_found if not convertible to a recursive type.
val find_rectype : Environ.env -> Constr.types -> Constr.pinductive * Constr.constr listval find_inductive : Environ.env -> Constr.types -> Constr.pinductive * Constr.constr listval find_coinductive : Environ.env -> Constr.types -> Constr.pinductive * Constr.constr listtype mind_specif = Declarations.mutual_inductive_body * Declarations.one_inductive_bodyval lookup_mind_specif : Environ.env -> Names.inductive -> mind_specifFetching information in the environment about an inductive type. Raises an anomaly if the inductive type is not found.
val inductive_paramdecls : Declarations.mutual_inductive_body Univ.puniverses -> Constr.rel_contextReturns the parameters of an inductive type with universes instantiated
val inductive_nonrec_rec_paramdecls : Declarations.mutual_inductive_body Univ.puniverses -> Constr.rel_context * Constr.rel_contextReturns the parameters of an inductive type with universes instantiated, splitting it into the contexts of recursively uniform and recursively non-uniform parameters
val instantiate_inductive_constraints : Declarations.mutual_inductive_body -> Univ.Instance.t -> Univ.Constraints.ttype param_univs = (unit -> Sorts.t) listval make_param_univs : Environ.env -> Constr.constr array -> param_univsThe constr array is the types of the arguments to a template polymorphic inductive.
val constrained_type_of_inductive : mind_specif Univ.puniverses -> Constr.types Univ.constrainedval constrained_type_of_inductive_knowing_parameters : mind_specif Univ.puniverses -> param_univs -> Constr.types Univ.constrainedval relevance_of_inductive : Environ.env -> Names.inductive -> Sorts.relevanceval type_of_inductive : mind_specif Univ.puniverses -> Constr.typesval type_of_inductive_knowing_parameters : ?polyprop:bool -> mind_specif Univ.puniverses -> param_univs -> Constr.typesval elim_sort : mind_specif -> Sorts.familyval is_private : mind_specif -> boolval is_primitive_record : mind_specif -> boolReturn type as quoted by the user
val constrained_type_of_constructor : Constr.pconstructor -> mind_specif -> Constr.types Univ.constrainedval type_of_constructor : Constr.pconstructor -> mind_specif -> Constr.typesval arities_of_constructors : Constr.pinductive -> mind_specif -> Constr.types arrayReturn constructor types in normal form
val type_of_constructors : Constr.pinductive -> mind_specif -> Constr.types arrayReturn constructor types in user form
val abstract_constructor_type_relatively_to_inductive_types_context : int -> Names.MutInd.t -> Constr.types -> Constr.typesTurns a constructor type recursively referring to inductive types into the same constructor type referring instead to a context made from the abstract declaration of the inductive types (e.g. turns nat->nat into mkArrowR (Rel 1) (Rel 2)); takes as arguments the number of inductive types in the block and the name of the block
val inductive_params : mind_specif -> intval expand_case : Environ.env -> Constr.case -> Constr.case_info * Constr.constr * Constr.case_invert * Constr.constr * Constr.constr arrayGiven a pattern-matching represented compactly, expands it so as to produce lambda and let abstractions in front of the return clause and the pattern branches.
val expand_case_specif : Declarations.mutual_inductive_body -> Constr.case -> Constr.case_info * Constr.constr * Constr.case_invert * Constr.constr * Constr.constr arrayval contract_case : Environ.env -> (Constr.case_info * Constr.constr * Constr.case_invert * Constr.constr * Constr.constr array) -> Constr.caseDual operation of the above. Fails if the return clause or branch has not the expected form.
val instantiate_context : Univ.Instance.t -> Vars.substl -> Names.Name.t Context.binder_annot array -> Constr.rel_context -> Constr.rel_contextinstantiate_context u subst nas ctx applies both u and subst to ctx while replacing names using nas (order reversed). In particular, assumes that ctx and nas have the same length.
val build_branches_type : Constr.pinductive -> (Declarations.mutual_inductive_body * Declarations.one_inductive_body) -> Constr.constr list -> Constr.constr -> Constr.types arrayval mind_arity : Declarations.one_inductive_body -> Constr.rel_context * Sorts.familyReturn the arity of an inductive type
val inductive_sort_family : Declarations.one_inductive_body -> Sorts.familyval check_case_info : Environ.env -> Constr.pinductive -> Sorts.relevance -> Constr.case_info -> unitCheck a case_info actually correspond to a Case expression on the given inductive type.
val is_primitive_positive_container : Environ.env -> Names.Constant.t -> boolis_primitive_positive_container env c tells if the constant c is registered as a primitive type that can be seen as a container where the occurrences of its parameters are positive, in which case the positivity and guard conditions are extended to allow inductive types to nest their subterms in these containers.
val check_fix : Environ.env -> Constr.fixpoint -> unitWhen chk is false, the guard condition is not actually checked.
val check_cofix : Environ.env -> Constr.cofixpoint -> unitThe "polyprop" optional argument below controls the "Prop-polymorphism". By default, it is allowed. But when "polyprop=false", the following exception is raised when a polymorphic singleton inductive type becomes Prop due to parameter instantiation. This is used by the Ocaml extraction, which cannot handle (yet?) Prop-polymorphism.
exception SingletonInductiveBecomesProp of Names.Id.tval abstract_mind_lc : int -> int -> Names.MutInd.t -> (Constr.rel_context * Constr.constr) array -> Constr.constr array